Quantum modeling for breakthroughs in materials science and sustainable energy

Ernest Opoku knew he wanted to become a scientist when he was a little boy. But his school in Dadease, a small town in Ghana, offered no elective science courses — so Opoku created one for himself.

Even though they had neither a dedicated science classroom nor a lab, Opoku convinced his principal to bring in someone to teach him and five other friends he had convinced to join him. With just a chalkboard and some imagination, they learned about chemical interactions through the formulas and diagrams they drew together.

“I grew up in a town where it was difficult to find a scientist,” he says.

Today, Opoku has become one himself, recently earning a PhD in quantum chemistry from Auburn University. This year, he joins MIT as a part of the School of Science Dean’s Postdoctoral Fellowship program. Working with the Van Voorhis Group at the Department of Chemistry, Opoku’s goal is to advance computational methods to study how electrons behave — a fundamental research that underlies applications ranging from materials science to drug discovery.

“As a boy who wanted to satisfy my own curiosities at a young age, in addition to the fact that my parents had minimal formal education,” Opoku says, “I knew that the only way I would be able to accomplish my goal was to work hard.”

In pursuit of knowledge

When Opoku was 8 years old, he began independently learning English at school. He would come back with homework, but his parents were unable to help him, as neither of them could read or write in English. Frustrated, his mother asked an older student to help tutor her son.

Every day, the boys would meet at 6 o’clock. With no electricity at either of their homes, they practiced new vocabulary and pronunciations together by a kerosene lamp.

As he entered junior high school, Opoku’s fascination with nature grew.

“I realized that chemistry was the central science that really offered the insight that I wanted to really understand Creation from the smallest level,” he says.

He studied diligently and was able to get into one of Ghana’s top high schools — but his parents couldn’t afford the tuition. He therefore enrolled in Dadease Agric Senior High School in his hometown. By growing tomatoes and maize, he saved up enough money to support his education.

In 2012, he got into Kwame Nkrumah University of Science and Technology (KNUST), a first-ranking university in Ghana and the West Africa region. There, he was introduced to computational chemistry. Unlike many other branches of science, the field required only a laptop and the internet to study chemical reactions.

“Anything that comes to mind, anytime I can grab my computer and I’ll start exploring my curiosity. I don’t have to wait to go to the laboratory in order to interrogate nature,” he says.

Opoku worked from early morning to late night. None of it felt like work, though, thanks to his supervisor, the late quantum chemist Richard Tia, who was an associate professor of chemistry at KNUST.

“Every single day was a fun day,” he recalls of his time working with Tia. “I was being asked to do the things that I myself wanted to know, to satisfy my own curiosity, and by doing that I’ll be given a degree.”

In 2020, Opoku’s curiosity brought him even further, this time overseas to Auburn University in Alabama for his PhD. Under the guidance of his advisor, Professor J. V. Ortiz, Opoku contributed to the development of new computational methods to simulate how electrons bind to or detach from molecules, a process known as electron propagation.

What is new about Opoku’s approach is that it does not rely on any adjustable or empirical parameters. Unlike some earlier computational methods that require tuning to match experimental results, his technique uses advanced mathematical formulations to directly account for first principles of electron interactions. This makes the method more accurate — closely resembling results from lab experiments — while using less computational power.

By streamlining the calculations and eliminating guesswork, Opoku’s work marks a major step toward faster, more trustworthy quantum simulations across a wide range of molecules, including those never studied before — laying the groundwork for breakthroughs in many areas such as materials science and sustainable energy.

For his postdoctoral research at MIT, Opoku aims to advance electron propagator methods to address larger and more complex molecules and materials by integrating quantum computing, machine learning, and bootstrap embedding — a technique that simplifies quantum chemistry calculations by dividing large molecules into smaller, overlapping fragments. He is collaborating with Troy Van Voorhis, the Haslam and Dewey Professor of Chemistry, whose expertise in these areas can help make Opoku’s advanced simulations more computationally efficient and scalable.

“His approach is different from any of the ways that we’ve pursued in the group in the past,” Van Voorhis says.

Passing along the opportunity to learn

Opoku thanks previous mentors who helped him overcome the “intellectual overhead required to make contributions to the field,” and believes Van Voorhis will offer the same kind of support.

In 2021, Opoku joined the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) to gain mentorship, networking, and career development opportunities within a supportive community. He later led the Auburn University chapter as president, helping coordinate k-12 outreach to inspire the next generation of scientists, engineers, and innovators.

“Opoku’s mentorship goes above and beyond what would be typical at his career stage,” says Van Voorhis. “One reason is his ability to communicate science to people, and not just the concepts of science, but also the process of science.”

Back home, Opoku founded the Nesvard Institute of Molecular Sciences to support African students to develop not only skills for graduate school and professional careers, but also a sense of confidence and cultural identity. Through the nonprofit, he has mentored 29 students so far, passing along the opportunity for them to follow their curiosity and help others do the same.

“There are many areas of science and engineering to which Africans have made significant contributions, but these contributions are often not recognized, celebrated, or documented,” Opoku says.

He adds: “We have a duty to change the narrative.”

MIT Energy Initiative conference spotlights research priorities amidst a changing energy landscape

“We’re here to talk about really substantive changes, and we want you to be a participant in that,” said Desirée Plata, the School of Engineering Distinguished Professor of Climate and Energy in MIT’s Department of Civil and Environmental Engineering, at Energizing@MIT: the MIT Energy Initiative’s (MITEI) Annual Research Conference that was held on Sept. 9-10.

Plata’s words resonated with the 150-plus participants from academia, industry, and government meeting in Cambridge for the conference, whose theme was “tackling emerging energy challenges.” Meeting such challenges and ultimately altering the trajectory of global climate outcomes requires partnerships, speakers agreed.

“We have to be humble and open,” said Giacomo Silvestri, chair of Eniverse Ventures at Eni, in a shared keynote address. “We cannot develop innovation just focusing on ourselves and our competencies … so we need to partner with startups, venture funds, universities like MIT and other public and private institutions.”

Added his Eni colleague, Annalisa Muccioli, head of research and technology, “The energy transition is a race we can win only by combining mature solutions ready to deploy, together with emerging technologies that still require acceleration and risk management.”

Research targets

In a conference that showcased a suite of research priorities MITEI has identified as central to ensuring a low-carbon energy future, participants shared both promising discoveries and strategies for advancing proven technologies in the face of shifting political winds and policy uncertainties.

One panel focused on grid resiliency — a topic that has moved from the periphery to the center of energy discourse as climate-driven disruptions, cyber threats, and the integration of renewables challenge legacy systems. A dramatic case in point: the April 2025 outage in Spain and Portugal that left millions without power for eight to 15 hours.

“I want to emphasize that this failure was about more than the power system,” said MITEI research scientist Pablo Duenas-Martinez. While he pinpointed technical problems with reactive power and voltage control behind the system collapse, Duenas-Martinez also called out a lack of transmission capacity with Central Europe and out-of-date operating procedures, and recommended better preparation and communication among transmission systems and utility operators.

“You can’t plan for every single eventuality, which means we need to broaden the portfolio of extreme events we prepare for,” noted Jennifer Pearce, vice president at energy company Avangrid. “We are making the system smarter, stronger, and more resilient to better protect from a wide range of threats such as storms, flooding, and extreme heat events.” Pearce noted that Avangrid’s commitment to deliver safe, reliable power to its customers necessitates “meticulous emergency planning procedures.”

The resiliency of the electric grid under greatly increased demand is an important motivation behind MITEI’s September 2025 launch of the Data Center Power Forum, which was also announced during the annual research conference. The forum will include research projects, webinars, and other content focused on energy supply and storage, grid design and management, infrastructure, and public and economic policy related to data centers. The forum’s members include MITEI companies that also participate in MIT’s Center for Environmental and Energy Policy Research (CEEPR).

Storage and transportation: Staggering challenges

Meeting climate goals to decarbonize the world by 2050 requires building around 300 terawatt-hours of storage, according to Asegun Henry, a professor in the MIT Department of Mechanical Engineering. “It’s an unbelievably enormous problem people have to wrap their minds around,” he said. Henry has been developing a high-temperature thermal energy storage system he has nicknamed “sun in a box.” His system uses liquid metal and graphite to hold electricity as heat and then convert it back to electricity, enabling storage anywhere from five to 500 hours.

“At the end of the day, storage provides a service, and the type of technology that you need is a function of the service that you value the most,” said Nestor Sepulveda, commercial lead for advanced energy investments and partnerships at Google. “I don’t think there is one winner-takes-all type of market here.”

Another panel explored sustainable fuels that could help decarbonize hard-to-electrify sectors like aviation, shipping, and long-haul trucking. Randall Field, MITEI’s director of research, noted that sustainably produced drop-in fuels — fuels that are largely compatible with existing engines — “could eliminate potentially trillions of dollars of cost for fleet replacement and for infrastructure build-out, while also helping us to accelerate the rate of decarbonization of the transportation sectors.”

Erik G. Birkerts is the chief growth officer of LanzaJet, which produces a drop-in, high-energy-density aviation fuel derived from agricultural residue and other waste carbon sources. “The key to driving broad sustainable aviation fuel adoption is solving both the supply-side challenge through more production and the demand-side hurdle by reducing costs,” he said.

“We think a good policy framework [for sustainable fuels] would be something that is technology-neutral, does not exclude any pathways to produce, is based on life cycle accounting practices, and on market mechanisms,” said Veronica L. Robertson, energy products technology portfolio manager at ExxonMobil.

MITEI plans a major expansion of its research on sustainable fuels, announcing a two-year study, “The future of fuels: Pathways to sustainable transportation,” starting in early 2026. According to Field, the study will analyze and assess biofuels and e-fuels.

Solutions from labs big and small

Global energy leaders offered glimpses of their research projects. A panel on carbon capture in power generation featured three takes on the topic: Devin Shaw, commercial director of decarbonization technologies at Shell, described post-combustion carbon capture in power plants using steam for heat recovery; Jan Marsh, a global program lead at Siemens Energy, discussed deploying novel materials to capture carbon dioxide directly from the air; and Jeffrey Goldmeer, senior director of technology strategy at GE Vernova, explained integrating carbon capture into gas-powered turbine systems.

During a panel on vehicle electrification, Brian Storey, vice president of energy and materials at the Toyota Research Institute, provided an overview of Toyota’s portfolio of projects for decarbonization, including solid-state batteries, flexible manufacturing lines, and grid-forming inverters to support EV charging infrastructure.

A session on MITEI seed fund projects revealed promising early-stage research inside MIT’s own labs. A new process for decarbonizing the production of ethylene was presented by Yogesh Surendranath, Donner Professor of Science in the MIT Department of Chemistry. Materials Science and Engineering assistant professor Aristide Gumyusenge also discussed the development of polymers essential for a new kind of sodium-ion battery.

Shepherding bold, new technologies like these from academic labs into the real world cannot succeed without ample support and deft management. A panel on paths to commercialization featured the work of Iwnetim Abate, Chipman Career Development Professor and assistant professor in the MIT Department of Materials Science and Engineering, who has spun out a company, Addis Energy, based on a novel geothermal process for harvesting clean hydrogen and ammonia from subsurface, iron-rich rocks. Among his funders: ARPA-E and MIT’s own The Engine Ventures.

The panel also highlighted the MIT Proto Ventures Program, an initiative to seize early-stage MIT ideas and unleash them as world-changing startups. “A mere 4.2 percent of all the patents that are actually prosecuted in the world are ever commercialized, which seems like a shocking number,” said Andrew Inglis, an entrepreneur working with Proto Ventures to translate geothermal discoveries into businesses. “Can’t we do this better? Let’s do this better!”

Geopolitical hazards

Throughout the conference, participants often voiced concern about the impacts of competition between the United States and China. Kelly Sims Gallagher, dean of the Fletcher School at Tufts University and an expert on China’s energy landscape, delivered the sobering news in her keynote address: “U.S. competitiveness in low-carbon technologies has eroded in nearly every category,” she said. “The Chinese are winning the clean tech race.”

China enjoys a 51 percent share in global wind turbine manufacture and 75 percent in solar modules. It also controls low-carbon supply chains that much of the world depends on. “China is getting so dominant that nobody can carve out a comparative advantage in anything,” said Gallagher. “China is just so big, and the scale is so huge that the Chinese can truly conquer markets and make it very hard for potential competitors to find a way in.”

And for the United States, the problem is “the seesaw of energy policy,” she says. “It’s incredibly difficult for the private sector to plan and to operate, given the lack of predictability and policy here.”

Nevertheless, Gallagher believes the United States still has a chance of at least regaining competitiveness, by setting up a stable, bipartisan energy policy, rebuilding domestic manufacturing and supply chains; providing consistent fiscal incentives; attracting and retaining global talent; and fostering international collaboration.

The conference shone a light on one such collaboration: a China-U.S. joint venture to manufacture lithium iron phosphate batteries for commercial vehicles in the United States. The venture brings together Eve Energy, a Chinese battery technology and manufacturing company; Daimler, a global commercial vehicle manufacturer; PACCAR Inc., a U.S.-based truck manufacturer; and Accelera, the zero-emissions business of Cummins Inc. “Manufacturing batteries in the U.S. makes the supply chain more robust and reduces geopolitical risks,” said Mike Gerty, of PACCAR.

While she acknowledged the obstacles confronting her colleagues in the room, Plata nevertheless concluded her remarks as a panel moderator with some optimism: “I hope you all leave this conference and look back on it in the future, saying I was in the room when they actually solved some of the challenges standing between now and the future that we all wish to manifest.”

Leading quantum at an inflection point

Danna Freedman is seeking the early adopters.

She is the faculty director of the nascent MIT Quantum Initiative, or QMIT. In this new role, Freedman is giving shape to an ambitious, Institute-wide effort to apply quantum breakthroughs to the most consequential challenges in science, technology, industry, and national security.

The interdisciplinary endeavor, the newest of MIT President Sally Kornbluth’s strategic initiatives, will bring together MIT researchers and domain experts from a range of industries to identify and tackle practical challenges wherever quantum solutions could achieve the greatest impact.

“We’ve already seen how the breadth of progress in quantum has created opportunities to rethink the future of security and encryption, imagine new modes of navigation, and even measure gravitational waves more precisely to observe the cosmos in an entirely new way,” says Freedman, the Frederick George Keyes Professor of Chemistry. “What can we do next? We’re investing in the promise of quantum, and where the legacy will be in 20 years.”

QMIT — the name is a nod to the “qubit,” the basic unit of quantum information — will formally launch on Dec. 8 with an all-day event on campus. Over time, the initiative plans to establish a physical home in the heart of campus for academic, public, and corporate engagement with state-of-the-art integrated quantum systems. Beyond MIT’s campus, QMIT will also work closely with the U.S. government and MIT Lincoln Laboratory, applying the lab’s capabilities in quantum hardware development, systems engineering, and rapid prototyping to national security priorities.

“The MIT Quantum Initiative seizes a timely opportunity in service to the nation’s scientific, economic, and technological competitiveness,” says Ian A. Waitz, MIT’s vice president for research. “With quantum capabilities approaching an inflection point, QMIT will engage students and researchers across all our schools and the college, as well as companies around the world, in thinking about what a step change in sensing and computational power will mean for a wide range of fields. Incredible opportunities exist in health and life sciences, fundamental physics research, cybersecurity, materials science, sensing the world around us, and more.”

Identifying the right questions

Quantum phenomena are as foundational to our world as light or gravity. At an extremely small scale, the interactions of atoms and subatomic particles are controlled by a different set of rules than the physical laws of the macro-sized world. These rules are called quantum mechanics.

“Quantum, in a sense, is what underlies everything,” says Freedman.

By leveraging quantum properties, quantum devices can process information at incredible speed to solve complex problems that aren’t feasible on classical supercomputers, and to enable ultraprecise sensing and measurement. Those improvements in speed and precision will become most powerful when optimized in relation to specific use cases, and as part of a complete quantum system. QMIT will focus on collaboration across domains to co-develop quantum tools, such as computers, sensors, networks, simulations, and algorithms, alongside the intended users of these systems.

As it develops, QMIT will be organized into programmatic pillars led by top researchers in quantum including Paola Cappellaro, Ford Professor of Engineering and professor of nuclear science and engineering and of physics; Isaac Chuang, Julius A. Stratton Professor in Electrical Engineering and Physics; Pablo Jarillo-Herrero, Cecil and Ida Green Professor of Physics; William Oliver, Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science and professor of physics; Vladan Vuletić, Lester Wolfe Professor of Physics; and Jonilyn Yoder, associate leader of the Quantum-Enabled Computation Group at MIT Lincoln Laboratory.

While supporting the core of quantum research in physics, engineering, mathematics, and computer science, QMIT promises to expand the community at its frontiers, into astronomy, biology, chemistry, materials science, and medicine.

“If you provide a foundation that somebody can integrate with, that accelerates progress a lot,” says Freedman. “Perhaps we want to figure out how a quantum simulator we’ve built can model photosynthesis, if that’s the right question — or maybe the right question is to study 10 failed catalysts to see why they failed.”

“We are going to figure out what real problems exist that we could approach with quantum tools, and work toward them in the next five years,” she adds. “We are going to change the forward momentum of quantum in a way that supports impact.”

The MIT Quantum Initiative will be administratively housed in the Research Laboratory of Electronics (RLE), with support from the Office of the Vice President for Research (VPR) and the Office of Innovation and Strategy.

QMIT is a natural expansion of MIT’s Center for Quantum Engineering (CQE), a research powerhouse that engages more than 80 principal investigators across the MIT campus and Lincoln Laboratory to accelerate the practical application of quantum technologies.

“CQE has cultivated a tremendously strong ecosystem of students and researchers, engaging with U.S. government sponsors and industry collaborators, including through the popular Quantum Annual Research Conference (QuARC) and professional development classes,” says Marc Baldo, the Dugald C. Jackson Professor in Electrical Engineering and director of RLE.

“With the backing of former vice president for research Maria Zuber, former Lincoln Lab director Eric Evans, and Marc Baldo, we launched CQE and its industry membership group in 2019 to help bridge MIT’s research efforts in quantum science and engineering,” says Oliver, CQE’s director, who also spent 20 years at Lincoln Laboratory, most recently as a Laboratory Fellow. “We have an important opportunity now to deepen our commitment to quantum research and education, and especially in engaging students from across the Institute in thinking about how to leverage quantum science and engineering to solve hard problems.”

Two years ago, Peter Fisher, the Thomas A. Frank (1977) Professor of Physics, in his role as associate vice president for research computing and data, assembled a faculty group led by Cappellaro and involving Baldo, Oliver, Freedman, and others, to begin to build an initiative that would span the entire Institute. Now, capitalizing on CQE’s success, Oliver will lead the new MIT Quantum Initiative’s quantum computing pillar, which will broaden the work of CQE into a larger effort that focuses on quantum computing, industry engagement, and connecting with end users.

The “MIT-hard” problem

QMIT will build upon the Institute’s historic leadership in quantum science and engineering. In the spring of 1981, MIT hosted the first Physics of Computation Conference at the Endicott House, bringing together nearly 50 physics and computing researchers to consider the practical promise of quantum — an intellectual moment that is now widely regarded as the kickoff of the second quantum revolution. (The first was the fundamental articulation of quantum mechanics 100 years ago.)

Today, research in quantum science and engineering produces a steady stream of “firsts” in the lab and a growing number of startup companies.

In collaboration with partners in industry and government, MIT researchers develop advances in areas like quantum sensing, which involves the use of atomic-scale systems to measure certain properties, like distance and acceleration, with extreme precision. Quantum sensing could be used in applications like brain imaging devices that capture more detail, or air traffic control systems with greater positional accuracy.

Another key area of research is quantum simulation, which uses the power of quantum computers to accurately emulate complex systems. This could fuel the discovery of new materials for energy-efficient electronics or streamline the identification of promising molecules for drug development.

“Historically, when we think about the most well-articulated challenges that quantum will solve,” Freedman says, “the best ones have come from inside of MIT. We’re open to technological solutions to problems, and nontraditional approaches to science. In many respects, we are the early adopters.”

But she also draws a sharp distinction between blue-sky thinking about what quantum might do, and the deeply technical, deeply collaborative work of actually drawing the roadmap. “That’s the ‘MIT-hard’ problem,” she says.

The QMIT launch event on Dec. 8 will feature talks and discussions featuring MIT faculty, including Nobel laureates and industry leaders.

Astronomical data collection of Taurus Molecular Cloud-1 reveals over 100 different molecules

MIT researchers recently studied a region of space called the Taurus Molecular Cloud-1 (TMC-1) and discovered more than 100 different molecules floating in the gas there — more than in any other known interstellar cloud. They used powerful radio telescopes capable of detecting very faint signals across a wide range of wavelengths in the electromagnetic spectrum.

With over 1,400 observing hours on the Green Bank Telescope (GBT) — the world’s largest fully steerable radio telescope, located in West Virginia — researchers in the group of Brett McGuire collected the astronomical data needed to search for molecules in deep space and have made the full dataset publicly available. From these observations, published in The Astrophysical Journal Supplement Series (ApJS), the team censused 102 molecules in TMC-1, a cold interstellar cloud where sunlike stars are born. Most of these molecules are hydrocarbons (made only of carbon and hydrogen) and nitrogen-rich compounds, in contrast to the oxygen-rich molecules found around forming stars. Notably, they also detected 10 aromatic molecules (ring-shaped carbon structures), which make up a small but significant fraction of the carbon in the cloud.

“This project represents the single largest amount of telescope time for a molecular line survey that has been reduced and publicly released to date, enabling the community to pursue discoveries such as biologically relevant organic matter,” said Ci Xue, a postdoc in the McGuire Group and the project’s principal researcher. “This molecular census offers a new benchmark for the initial chemical conditions for the formation of stars and planets.”

To handle the immense dataset, the researchers built an automated system to organize and analyze the results. Using advanced statistical methods, they determined the amounts of each molecule present, including variations containing slightly different atoms (such as carbon-13 or deuterium).

“The data we’re releasing here are the culmination of more than 1,400 hours of observational time on the GBT, one of the NSF’s premier radio telescopes,” says McGuire, the Class of 1943 Career Development Associate Professor of Chemistry. “In 2021, these data led to the discovery of individual PAH molecules in space for the first time, answering a three-decade-old mystery dating back to the 1980s. In the following years, many more and larger PAHs have been discovered in these data, showing that there is indeed a vast and varied reservoir of this reactive organic carbon present at the earliest stages of star and planet formation. There is still so much more science, and so many new molecular discoveries, to be made with these data, but our team feels strongly that datasets like this should be opened to the scientific community, which is why we’re releasing the fully calibrated, reduced, science-ready product freely for anyone to use.”

Overall, this study provides the single largest publicly released molecular line survey to date, enabling the scientific community to pursue discoveries such as biologically relevant molecules. This molecular census offers a new benchmark for understanding the chemical conditions that exist before stars and planets form.

Matthew Shoulders named head of the Department of Chemistry

Matthew D. Shoulders, the Class of 1942 Professor of Chemistry, a MacVicar Faculty Fellow, and an associate member of the Broad Institute of MIT and Harvard, has been named head of the MIT Department of Chemistry, effective Jan. 16, 2026.

“Matt has made pioneering contributions to the chemistry research community through his research on mechanisms of proteostasis and his development of next-generation techniques to address challenges in biomedicine and agriculture,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “He is also a dedicated educator, beloved by undergraduates and graduates alike. I know the department will be in good hands as we double down on our commitment to world-leading research and education in the face of financial headwinds.”

Shoulders succeeds Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, who has been at the helm since October 2019.

“I am tremendously grateful to Troy for his leadership the past six years, building a fantastic community here in our department. We face challenges, but also many exciting opportunities, as a department in the years to come,” says Shoulders. “One thing is certain: Chemistry innovations are critical to solving pressing global challenges. Through the research that we do and the scientists we train, our department has a huge role to play in shaping the future.”

Shoulders studies how cells fold proteins, and he develops ​and applies novel protein engineering techniques to challenges in biotechnology. His work across chemistry and biochemistry fields including proteostasis, extracellular matrix biology, virology, evolution, and synthetic biology is yielding not just important insights into topics like how cells build healthy tissues and how proteins evolve, but also influencing approaches to disease therapy and biotechnology development.

“Matt is an outstanding researcher whose work touches on fundamental questions about how the cell machinery directs the synthesis and folding of proteins. His discoveries about how that machinery breaks down as a result of mutations or in response to stress has a fundamental impact on how we think about and treat human diseases,” says Van Voorhis.

In one part of Matt’s current research program, he is studying how protein folding systems in cells — known as chaperones — shape the evolution of their clients. Amongst other discoveries, his lab has shown that viral pathogens hijack human chaperones to enable their rapid evolution and escape from host immunity. In related recent work, they have discovered that these same chaperones can promote access to malignancy-driving mutations in tumors. Beyond fundamental insights into evolutionary biology, these findings hold potential to open new therapeutic strategies to target cancer and viral infections.

“Matt’s ability to see both the details and the big picture makes him an outstanding researcher and a natural leader for the department,” says Timothy Swager, the John D. MacArthur Professor of Chemistry. “MIT Chemistry can only benefit from his dedication to understanding and addressing the parts and the whole.”

Shoulders also leads a food security project through the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Shoulders, along with MIT Research Scientist Robbie Wilson, assembled an interdisciplinary team based at MIT to enhance climate resilience in agriculture by improving one of the most inefficient aspects of photosynthesis, the carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk, high-reward MIT Grand Challenge project in 2023, and it has received further support from federal research agencies and the Grantham Foundation for the Protection of the Environment.

“Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists, creating a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team is making a concerted effort using state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”

In addition to his research contributions, Shoulders has taught multiple classes for Course V, including 5.54 (Advances in Chemical Biology) and 5.111 (Principles of Chemical Science), along with a number of other key chemistry classes. His contributions to a 5.111 “bootcamp” through the MITx platform served to address gaps in the classroom curriculum by providing online tools to help undergraduate students better grasp the material in the chemistry General Institute Requirement (GIR). His development of Guided Learning Demonstrations to support first-year chemistry courses at MIT has helped bring the lab to the GIR, and also contributed to the popularity of 5.111 courses offered regularly via MITx.

“I have had the pleasure of teaching with Matt on several occasions, and he is a fantastic educator. He is an innovator both inside and outside the classroom and has an unwavering commitment to his students’ success,” says Van Voorhis of Shoulders, who was named a 2022 MacVicar Faculty Fellow, and who received a Committed to Caring award through the Office of Graduate Education.

Shoulders also founded the MIT Homeschool Internship Program for Science and Technology, which brings high school students to campus for paid summer research experiences in labs across the Institute.

He is a founding member of the Department of Chemistry’s Quality of Life Committee and chair for the last six years, helping to improve all aspects of opportunity, professional development, and experience in the department: “countless changes that have helped make MIT a better place for all,” as Van Voorhis notes, including creating a peer mentoring program for graduate students and establishing universal graduate student exit interviews to collect data for department-wide assessment and improvement.

At the Institute level, Shoulders has served on the Committee on Graduate Programs, Committee on Sexual Misconduct Prevention and Response (in which he co-chaired the provost’s working group on the Faculty and Staff Sexual Misconduct Survey), and the Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight, among other roles.

Shoulders graduated summa cum laude from Virginia Tech in 2004, earning a BS in chemistry with a minor in biochemistry. He earned a PhD in chemistry at the University of Wisconsin at Madison in 2009 under Professor Ronald Raines. Following an American Cancer Society Postdoctoral Fellowship at Scripps Research Institute, working with professors Jeffery Kelly and Luke Wiseman, Shoulders joined the MIT Department of Chemistry faculty as an assistant professor in 2012. Shoulders also serves as an associate member of the Broad Institute and an investigator at the Center for Musculoskeletal Research at Massachusetts General Hospital.

Among his many awards, Shoulders has received a NIH Director’s New Innovator Award under the NIH High-Risk, High-Reward Research Program; an NSF CAREER Award; an American Cancer Society Research Scholar Award; the Camille Dreyfus Teacher-Scholar Award; and most recently the Ono Pharma Foundation Breakthrough Science Award.

Chemists create red fluorescent dyes that may enable clearer biomedical imaging

MIT chemists have designed a new type of fluorescent molecule that they hope could be used for applications such as generating clearer images of tumors.

The new dye is based on a borenium ion — a positively charged form of boron that can emit light in the red to near-infrared range. Until recently, these ions have been too unstable to be used for imaging or other biomedical applications.

In a study appearing today in Nature Chemistry, the researchers showed that they could stabilize borenium ions by attaching them to a ligand. This approach allowed them to create borenium-containing films, powders, and crystals, all of which emit and absorb light in the red and near-infrared range.

That is important because near-IR light is easier to see when imaging structures deep within tissues, which could allow for clearer images of tumors and other structures in the body.

“One of the reasons why we focus on red to near-IR is because those types of dyes penetrate the body and tissue much better than light in the UV and visible range. Stability and brightness of those red dyes are the challenges that we tried to overcome in this study,” says Robert Gilliard, the Novartis Professor of Chemistry at MIT and the senior author of the study.

MIT research scientist Chun-Lin Deng is the lead author of the paper. Other authors include Bi Youan (Eric) Tra PhD ’25, former visiting graduate student Xibao Zhang, and graduate student Chonghe Zhang.

Stabilized borenium

Most fluorescent imaging relies on dyes that emit blue or green light. Those imaging agents work well in cells, but they are not as useful in tissue because low levels of blue and green fluorescence produced by the body interfere with the signal. Blue and green light also scatters in tissue, limiting how deeply it can penetrate.

Imaging agents that emit red fluorescence can produce clearer images, but most red dyes are inherently unstable and don’t produce a bright signal, because of their low quantum yields (the ratio of fluorescent photons emitted per photon of light is absorbed). For many red dyes, the quantum yield is only about 1 percent.

Among the molecules that can emit near-infrared light are borenium cations —positively charged ions containing an atom of boron attached to three other atoms.

When these molecules were first discovered in the mid-1980s, they were considered “laboratory curiosities,” Gilliard says. These molecules were so unstable that they had to be handled in a sealed container called a glovebox to protect them from exposure to air, which can lead them to break down.

Later, chemists realized they could make these ions more stable by attaching them to molecules called ligands. Working with these more stable ions, Gillliard’s lab discovered in 2019 that they had some unusual properties: Namely, they could respond to changes in temperature by emitting different colors of light.

However, at that point, “there was a substantial problem in that they were still too reactive to be handled in open air,” Gilliard says.

His lab began working on new ways to further stabilize them using ligands known as carbodicarbenes (CDCs), which they reported in a 2022 study. Due to this stabilization, the compounds can now be studied and handled without using a glovebox. They are also resistant to being broken down by light, unlike many previous borenium-based compounds.

In the new study, Gilliard began experimenting with the anions (negatively charged ions) that are a part of the CDC-borenium compounds. Interactions between these anions and the borenium cation generate a phenomenon known as exciton coupling, the researchers discovered. This coupling, they found, shifted the molecules’ emission and absorption properties toward the infrared end of the color spectrum. These molecules also generated a high quantum yield, allowing them to shine more brightly.

“Not only are we in the correct region, but the efficiency of the molecules is also very suitable,” Gilliard says. “We’re up to percentages in the thirties for the quantum yields in the red region, which is considered to be high for that region of the electromagnetic spectrum.”

Potential applications

The researchers also showed that they could convert their borenium-containing compounds into several different states, including solid crystals, films, powders, and colloidal suspensions.

For biomedical imaging, Gilliard envisions that these borenium-containing materials could be encapsulated in polymers, allowing them to be injected into the body to use as an imaging dye. As a first step, his lab plans to work with researchers in the chemistry department at MIT and at the Broad Institute of MIT and Harvard to explore the potential of imaging these materials within cells.

Because of their temperature responsiveness, these materials could also be deployed as temperature sensors, for example, to monitor whether drugs or vaccines have been exposed to temperatures that are too high or low during shipping.

“For any type of application where temperature tracking is important, these types of ‘molecular thermometers’ can be very useful,” Gilliard says.

If incorporated into thin films, these molecules could also be useful as organic light-emitting diodes (OLEDs), particularly in new types of materials such as flexible screens, Gilliard says.

“The very high quantum yields achieved in the near-IR, combined with the excellent environmental stability, make this class of compounds extremely interesting for biological applications,” says Frieder Jaekle, a professor of chemistry at Rutgers University, who was not involved in the study. “Besides the obvious utility in bioimaging, the strong and tunable near-IR emission also makes these new fluorophores very appealing as smart materials for anticounterfeiting, sensors, switches, and advanced optoelectronic devices.”

In addition to exploring possible applications for these dyes, the researchers are now working on extending their color emission further into the near-infrared region, which they hope to achieve by incorporating additional boron atoms. Those extra boron atoms could make the molecules less stable, so the researchers are also working on new types of carbodicarbenes to help stabilize them.

The research was funded by the Arnold and Mabel Beckman Foundation and the National Institutes of Health.

A simple formula could guide the design of faster-charging, longer-lasting batteries

At the heart of all lithium-ion batteries is a simple reaction: Lithium ions dissolved in an electrolyte solution “intercalate” or insert themselves into a solid electrode during battery discharge. When they de-intercalate and return to the electrolyte, the battery charges.

This process happens thousands of times throughout the life of a battery. The amount of power that the battery can generate, and how quickly it can charge, depend on how fast this reaction happens. However, little is known about the exact mechanism of this reaction, or the factors that control its rate.

In a new study, MIT researchers have measured lithium intercalation rates in a variety of different battery materials and used that data to develop a new model of how the reaction is controlled. Their model suggests that lithium intercalation is governed by a process known as coupled ion-electron transfer, in which an electron is transferred to the electrode along with a lithium ion.

Insights gleaned from this model could guide the design of more powerful and faster charging lithium-ion batteries, the researchers say.

“What we hope is enabled by this work is to get the reactions to be faster and more controlled, which can speed up charging and discharging,” says Martin Bazant, the Chevron Professor of Chemical Engineering and a professor of mathematics at MIT.

The new model may also help scientists understand why tweaking electrodes and electrolytes in certain ways leads to increased energy, power, and battery life — a process that has mainly been done by trial and error.

“This is one of these papers where now we began to unify the observations of reaction rates that we see with different materials and interfaces, in one theory of coupled electron and ion transfer for intercalation, building up previous work on reaction rates,” says Yang Shao-Horn, the J.R. East Professor of Engineering at MIT and a professor of mechanical engineering, materials science and engineering, and chemistry.

Shao-Horn and Bazant are the senior authors of the paper, which appears today in Science. The paper’s lead authors are Yirui Zhang PhD ’22, who is now an assistant professor at Rice University; Dimitrios Fraggedakis PhD ’21, who is now an assistant professor at Princeton University; Tao Gao, a former MIT postdoc who is now an assistant professor at the University of Utah; and MIT graduate student Shakul Pathak.

Modeling lithium flow

For many decades, scientists have hypothesized that the rate of lithium intercalation at a lithium-ion battery electrode is determined by how quickly lithium ions can diffuse from the electrolyte into the electrode. This reaction, they believed, was governed by a model known as the Butler-Volmer equation, originally developed almost a century ago to describe the rate of charge transfer during an electrochemical reaction.

However, when researchers have tried to measure lithium intercalation rates, the measurements they obtained were not always consistent with the rates predicted by the Butler-Volmer equation. Furthermore, obtaining consistent measurements across labs has been difficult, with different research teams reporting measurements for the same reaction that varied by a factor of up to 1 billion.

In the new study, the MIT team measured lithium intercalation rates using an electrochemical technique that involves applying repeated, short bursts of voltage to an electrode. They generated these measurements for more than 50 combinations of electrolytes and electrodes, including lithium nickel manganese cobalt oxide, which is commonly used in electric vehicle batteries, and lithium cobalt oxide, which is found in the batteries that power most cell phones, laptops, and other portable electronics.

For these materials, the measured rates are much lower than has previously been reported, and they do not correspond to what would be predicted by the traditional Butler-Volmer model.

The researchers used the data to come up with an alternative theory of how lithium intercalation occurs at the surface of an electrode. This theory is based on the assumption that in order for a lithium ion to enter an electrode, an electron from the electrolyte solution must be transferred to the electrode at the same time.

“The electrochemical step is not lithium insertion, which you might think is the main thing, but it’s actually electron transfer to reduce the solid material that is hosting the lithium,” Bazant says. “Lithium is intercalated at the same time that the electron is transferred, and they facilitate one another.”

This coupled-electron ion transfer (CIET) lowers the energy barrier that must be overcome for the intercalation reaction to occur, making it more likely to happen. The mathematical framework of CIET allowed the researchers to make reaction rate predictions, which were validated by their experiments and substantially different from those made by the Butler-Volmer model.

Faster charging

In this study, the researchers also showed that they could tune intercalation rates by changing the composition of the electrolyte. For example, swapping in different anions can lower the amount of energy needed to transfer the lithium and electron, making the process more efficient.

“Tuning the intercalation kinetics by changing electrolytes offers great opportunities to enhance the reaction rates, alter electrode designs, and therefore enhance the battery power and energy,” Shao-Horn says.

Shao-Horn’s lab and their collaborators have been using automated experiments to make and test thousands of different electrolytes, which are used to develop machine-learning models to predict electrolytes with enhanced functions.

The findings could also help researchers to design batteries that would charge faster, by speeding up the lithium intercalation reaction. Another goal is reducing the side reactions that can cause battery degradation when electrons are picked off the electrode and dissolve into the electrolyte.

“If you want to do that rationally, not just by trial and error, you need some kind of theoretical framework to know what are the important material parameters that you can play with,” Bazant says. “That’s what this paper tries to provide.”

The research was funded by Shell International Exploration and Production and the Toyota Research Institute through the D3BATT Center for Data-Driven Design of Rechargeable Batteries.

This MIT spinout is taking biomolecule storage out of the freezer

Ever since freezers were invented, the life sciences industry has been reliant on them. That’s because many patient samples, drug candidates, and other biologics must be stored and transported in powerful freezers or surrounded by dry ice to remain stable.

The problem was on full display during the Covid-19 pandemic, when truckloads of vaccines had to be discarded because they had thawed during transport. Today, the stakes are even higher. Precision medicine, from CAR-T cell therapies to tumor DNA sequencing that guides cancer treatment, depends on pristine biological samples. Yet a single power outage, shipping delay, or equipment failure can destroy irreplaceable patient samples, setting back treatment by weeks or halting it entirely. In remote areas and developing nations, the lack of reliable cold storage effectively locks out entire populations from these life-saving advances.

Cache DNA wants to set the industry free from freezers. At MIT, the company’s founders created a new way to store and preserve DNA molecules at room temperature. Now the company is building biomolecule preservation technologies that can be used in applications across health care, from routine blood tests and cancer screening to rare disease research and pandemic preparedness.

“We want to challenge the paradigm,” says Cache DNA co-founder and former MIT postdoc James Banal. “Biotech has been reliant on the cold chain for more than 50 years. Why hasn’t that changed? Meanwhile, the cost of DNA sequencing has plummeted from $3 billion for the first human genome to under $200 today. With DNA sequencing and synthesis becoming so cheap and fast, storage and transport have emerged as the critical bottlenecks. It’s like having a supercomputer that still requires punch cards for data input.”

As the company works to preserve biomolecules beyond DNA and scale the production of its kits, co-founders Banal and MIT Professor Mark Bathe believe their technology has the potential to unlock new health insights by making sample storage accessible to scientists around the world.

“Imagine if every human on Earth could contribute to a global biobank, not just those living near million-dollar freezer facilities,” Banal says. “That’s 8 billion biological stories instead of just a privileged few. The cures we’re missing might be hiding in the biomolecules of someone we’ve never been able to reach.”

From quantum computing to “Jurassic Park”

Banal came to MIT from Australia to work as a postdoc under Bathe, a professor in MIT’s Department of Biological Engineering. Banal primarily studied in the MIT-Harvard Center for Excitonics, through which he collaborated with researchers from across MIT.

“I worked on some really wacky stuff, like DNA nanotechnology and its intersection with quantum computing and artificial photosynthesis,” Banal recalls.

Another project focused on using DNA to store data. While computers store data as 0s and 1s, DNA can store the same information using the nucleotides A, T, G, and C, allowing for extremely dense storage of data: By one estimate, 1 gram of DNA can hold up to 215 petabytes of data.

After three years of work, in 2021, Banal and Bathe created a system that stored DNA-based data in tiny glass particles. They founded Cache DNA the same year, securing the intellectual property by working with MIT’s Technology Licensing Office, applying the technology to storing clinical nucleic acid samples as well as DNA data. Still, the technology was too nascent to be used for most commercial applications at the time.

Professor of chemistry Jeremiah Johnson had a different approach. His research had shown that certain plastics and rubbers could be made recyclable by adding cleavable molecular bonds. Johnson thought Cache DNA’s technology could be faster and more reliable using his amber-like polymers, similar to how researchers in the “Jurassic Park” movie recover ancient dinosaur DNA from a tree’s fossilized amber resin.

“It started basically as a fun conversation along the halls of Building 16,” Banal recalls. “He’d seen my work, and I was aware of the innovations in his lab.”

Banal immediately saw the potential. He was familiar with the burden of the cold chain. For his MIT experiments, he’d store samples in big freezers kept at -80 degrees Celsius. Samples would sometimes get lost in the freezer or be buried in the inevitable ice build-up. Even when they were perfectly preserved, samples could degrade as they thawed.

As part of a collaboration between Cache DNA and MIT, Banal, Johnson, and two researchers in Johnson’s lab developed a polymer that stores DNA at room temperature. In a nod to their inspiration, they demonstrated the approach by encoding DNA sequences with the “Jurassic Park” theme song.

The researchers’ polymers could encompass a material as a liquid and then form a solid, glass-like block when heated. To release the DNA, the researchers could add a molecule called cysteamine and a special detergent. The researchers showed the process could work to store and access all 50,000 base pairs of a human genome without causing damage.

“Real amber is not great at preservation. It’s porous and lets in moisture and air,” Banal says. “What we built is completely different: a dense polymer network that forms an impenetrable barrier around DNA. Think of it like vacuum-sealing, but at the molecular level. The polymer is so hydrophobic that water and enzymes that would normally destroy DNA simply can’t get through.”

As that research was taking shape, Cache DNA was learning that sample storage was a huge problem from hospitals and research labs. In places like Florida and Singapore, researchers said contending with the effects of humidity on samples was another constant headache. Other researchers across the globe wanted to know if the technology would help them collect samples outside of the lab.

“Hospitals told us they were running out of space,” Banal says. “They had to throw samples out, limit sample collection, and as a last-case scenario, they would use a decades-old storage technology that leads to degradation after a short period of time. It became a north star for us to solve those problems.”

A new tool for precision health

Last year, Cache DNA sent out more than 100 of its first alpha DNA preservation kits to researchers around the world.

“We didn’t tell researchers what to use it for, and our minds were blown by the use cases,” Banal says. “Some used it for collecting samples in the field where cold shipping wasn’t feasible. Others evaluated for long term archival storage. The applications were different, but the problem was universal: They all needed reliable storage without the constraint of refrigeration.”

Cache DNA has developed an entire suite of preservation technologies that can be optimized for different storage scenarios. The company also recently received a grant from the National Science Foundation to expand its technology to preserve a broader swath of biomolecules, including RNA and proteins, which could yield new insights into health and disease.

“This important innovation helps eliminate the cold chain and has the potential to unlock millions of genetic samples globally for Cache DNA to empower personalized medicine,” Bathe says. “Eliminating the cold chain is half the equation. The other half is scaling from thousands to millions or even billions of nucleic acid samples. Together, this could enable the equivalent of a ‘Google Books’ for nucleic acids stored at room temperature, either for clinical samples in hospital settings and remote regions of the world, or alternatively to facilitate DNA data storage and retrieval at scale.”

“Freezers have dictated where science could happen,” Banal says. “Remove that constraint, and you start to crack open possibilities: island nations studying their unique genetics without samples dying in transit; every rare disease patient worldwide contributing to research, not just those near major hospitals; the 2 billion people without reliable electricity finally joining global health studies. Room-temperature storage isn’t the whole answer, but every cure starts with a sample that survived the journey.”

“Bottlebrush” particles deliver big chemotherapy payloads directly to cancer cells

Using tiny particles shaped like bottlebrushes, MIT chemists have found a way to deliver a large range of chemotherapy drugs directly to tumor cells.

To guide them to the right location, each particle contains an antibody that targets a specific tumor protein. This antibody is tethered to bottlebrush-shaped polymer chains carrying dozens or hundreds of drug molecules — a much larger payload than can be delivered by any existing antibody-drug conjugates.

In mouse models of breast and ovarian cancer, the researchers found that treatment with these conjugated particles could eliminate most tumors. In the future, the particles could be modified to target other types of cancer, by swapping in different antibodies.

“We are excited about the potential to open up a new landscape of payloads and payload combinations with this technology, that could ultimately provide more effective therapies for cancer patients,” says Jeremiah Johnson, the A. Thomas Geurtin Professor of Chemistry at MIT, a member of the Koch Institute for Integrative Cancer Research, and the senior author of the new study.

MIT postdoc Bin Liu is the lead author of the paper, which appears today in Nature Biotechnology.

A bigger drug payload

Antibody-drug conjugates (ADCs) are a promising type of cancer treatment that consist of a cancer-targeting antibody attached to a chemotherapy drug. At least 15 ADCs have been approved by the FDA to treat several different types of cancer.

This approach allows specific targeting of a cancer drug to a tumor, which helps to prevent some of the side effects that occur when chemotherapy drugs are given intravenously. However, one drawback to currently approved ADCs is that only a handful of drug molecules can be attached to each antibody. That means they can only be used with very potent drugs — usually DNA-damaging agents or drugs that interfere with cell division.

To try to use a broader range of drugs, which are often less potent, Johnson and his colleagues decided to adapt bottlebrush particles that they had previously invented. These particles consist of a polymer backbone that are attached to tens to hundreds of “prodrug” molecules — inactive drug molecules that are activated upon release within the body. This structure allows the particles to deliver a wide range of drug molecules, and the particles can be designed to carry multiple drugs in specific ratios.

Using a technique called click chemistry, the researchers showed that they could attach one, two, or three of their bottlebrush polymers to a single tumor-targeting antibody, creating an antibody-bottlebrush conjugate (ABC). This means that just one antibody can carry hundreds of prodrug molecules. The currently approved ADCs can carry a maximum of about eight drug molecules.

The huge number of payloads in the ABC particles allows the researchers to incorporate less potent cancer drugs such as doxorubicin or paclitaxel, which enhances the customizability of the particles and the variety of drug combinations that can be used.

“We can use antibody-bottlebrush conjugates to increase the drug loading, and in that case, we can use less potent drugs,” Liu says. “In the future, we can very easily copolymerize with multiple drugs together to achieve combination therapy.”

The prodrug molecules are attached to the polymer backbone by cleavable linkers. After the particles reach a tumor site, some of these linkers are broken right away, allowing the drugs to kill nearby cancer cells even if they don’t express the target antibody. Other particles are absorbed into cells with the target antibody before releasing their toxic payload.

Effective treatment

For this study, the researchers created ABC particles carrying a few different types of drugs: microtubule inhibitors called MMAE and paclitaxel, and two DNA-damaging agents, doxorubicin and SN-38. They also designed ABC particles carrying an experimental type of drug known as PROTAC (proteolysis-targeting chimera), which can selectively degrade disease-causing proteins inside cells.

Each bottlebrush was tethered to an antibody targeting either HER2, a protein often overexpressed in breast cancer, or MUC1, which is commonly found in ovarian, lung, and other types of cancer.

The researchers tested each of the ABCs in mouse models of breast or ovarian cancer and found that in most cases, the ABC particles were able to eradicate the tumors. This treatment was significantly more effective than giving the same bottlebrush prodrugs by injection, without being conjugated to a targeting antibody.

“We used a very low dose, almost 100 times lower compared to the traditional small-molecule drug, and the ABC still can achieve much better efficacy compared to the small-molecule drug given on its own,” Liu says.

These ABCs also performed better than two FDA-approved ADCs, T-DXd and TDM-1, which both use HER2 to target cells. T-DXd carries deruxtecan, which interferes with DNA replication, and TDM-1 carries emtansine, a microtubule inhibitor.

In future work, the MIT team plans to try delivering combinations of drugs that work by different mechanisms, which could enhance their overall effectiveness. Among these could be immunotherapy drugs such as STING activators.

The researchers are also working on swapping in different antibodies, such as antibodies targeting EGFR, which is widely expressed in many tumors. More than 100 antibodies have been approved to treat cancer and other diseases, and in theory any of those could be conjugated to cancer drugs to create a targeted therapy.

The research was funded in part by the National Institutes of Health, the Ludwig Center at MIT, and the Koch Institute Frontier Research Program.

A boost for the precision of genome editing

The U.S. Food and Drug Administration’s recent approval of the first CRISPR-Cas9–based gene therapy has marked a major milestone in biomedicine, validating genome editing as a promising treatment strategy for disorders like sickle cell disease, muscular dystrophy, and certain cancers.

CRISPR-Cas9, often likened to “molecular scissors,” allows scientists to cut DNA at targeted sites to snip, repair, or replace genes. But despite its power, Cas9 poses a critical safety risk: The active enzyme can linger in cells and cause unintended DNA breaks — so-called off-target effects — which may trigger harmful mutations in healthy genes.

Now, researchers in the labs of Ronald T. Raines, MIT professor of chemistry, and Amit Choudhary, professor of medicine at Harvard Medical School, have engineered a precise way to turn Cas9 off after its job is done — significantly reducing off-target effects and improving the clinical safety of gene editing. Their findings are detailed in a new paper published in the Proceedings of the National Academy of Sciences (PNAS).

“To ‘turn off’ Cas9 after it achieves its intended genome-editing outcome, we developed the first cell-permeable anti-CRISPR protein system,” says Raines, the Roger and Georges Firmenich Professor of Natural Products Chemistry. “Our technology reduces the off-target activity of Cas9 and increases its genome-editing specificity and clinical utility.”

The new tool — called LFN-Acr/PA — uses a protein-based delivery system to ferry anti-CRISPR proteins into human cells rapidly and efficiently. While natural Type II anti-CRISPR proteins (Acrs) are known to inhibit Cas9, their use in therapy has been limited because they’re often too bulky or charged to enter cells, and conventional delivery methods are too slow or ineffective.

LFN-Acr/PA overcomes these hurdles using a component derived from anthrax toxin to introduce Acrs into cells within minutes. Even at picomolar concentrations, the system shuts down Cas9 activity with remarkable speed and precision — boosting genome-editing specificity up to 40 percent.

Bradley L. Pentelute, MIT professor of chemistry, is an expert on the anthrax delivery system, and is also an author of the paper.

The implications of this advance are wide-ranging. With patent applications filed, LFN-Acr/PA represents a faster, safer, and more controllable means of harnessing CRISPR-Cas9, opening the door to more-refined gene therapies with fewer unintended consequences.

The research was supported by the National Institutes of Health and a Gilliam Fellowship from the Howard Hughes Medical Institute awarded to lead author Axel O. Vera, a graduate student in the Department of Chemistry.